[スポンサーリンク]

化学者のつぶやき

固有のキラリティーを生むカリックス[4]アレーン合成法の開発

[スポンサーリンク]

不斉有機触媒を利用した分子間反応により、カリックス[4]アレーンにキラリティーを付与する手法が報告された。ワンポットで多様なキラルカリックス[4]アレーンを構築することが可能である。

固有キラリティーを有するキラルカリックス[4]アレーンの合成

カリックスアレーンは、フェノールの2位と6位がメチレン基で架橋された環状オリゴマーである。なかでも、不斉原子に依存しない「固有キラリティー」を有するキラルカリックス[4]アレーンは[1]、特異な不斉源としてキラル認識材料や不斉触媒への応用が期待されてきた[2]。しかし、従来の合成法で単一のエナンチオマーを得るためには、HPLCによる光学分割や不斉補助基の利用が必須であった[3]

このような背景のもと、キラルカリックス[4]アレーンの合成法が盛んに研究されてきた[4,5]。例えば、Caiらによるパラジウム触媒を利用したC­–Hアリール化反応では、高エナンチオ選択的にキラルカリックス[4]アレーンを与える(図1C)[4a]。また、2024年にWangらは、キラルリン酸触媒(CPA)を利用したSNAr反応で、ヘテロアレーンを組み込む手法を開発している[5]。しかし、これらの手法はどれも分子内反応に限定されていた。

今回、青島大学のLiuらは、新たに分子間反応を利用して、「固有キラリティー」をもつカリックス[4]アレーンの構築を目指した(図1D)。彼らは、CPAを用いる不斉Povarov反応に着目し[6]、テトラヒドロキノリンを構築した後、これを酸化することで、カリックス[4]アレーンにキラリティーを付与することに成功した。本手法の確立により、迅速に多様なキラルカリックス[4]アレーンを構築することが可能になった。

図1. (A) 固有キラリティー (B) 固有キラリティーを有する機能性分子 (C) 分子内反応によるキラルカリックス[4]アレーンの合成 (D)分子間反応による不斉の発現

“Organocatalytic Enantioselective Synthesis of Inherently Chiral Calix[4]arenes”

Jiang, Y.-K.; Tian, Y.-L.; Feng, J.; Zhang, H.; Wang, L.; Yang, W.-A.; Xu, X.-D.; Liu, R.-R. Angew. Chem., Int. Ed. 2024, e202407752. DOI: 10.1002/anie.202407752

論文著者の紹介

研究者:Ren-Rong Liu (刘人荣)

研究者の経歴:
2013                         Ph.D., East China Normal University, China (Prof. Junliang Zhang)
2013–2016            Lecturer, Zhejiang University of Technology, China (Prof. Yi-Xia Jia)
2016–2018            Associate Professor, Zhejiang University of Technology, China (Prof. Yi-Xia Jia)
2018–2019            Postdoc, Colorado State University, USA (Prof. Andrew McNally) 
2019–                       Professor, Qingdao University, China

研究内容: 不斉触媒を用いた反応開発、および、それらを利用した機能性分子の合成

論文の概要

検討の結果、CPA 1を用いることで、カリックス[4]アレーン1およびアルデヒド2、ビニルアミン3のPovarov反応が進行し、その後の酸化により、高エナンチオ選択的にキラルカリックス[4]アレーン4を与えた(図2A)。本反応の基質適用範囲は広く、多様な置換パターンのアセトフェノン(2a–2d)のみならず、ヘテロアリール基やアルキル基が置換したアルデヒド(2e–2f)にも適用できた。本手法により、簡便かつ高エナンチオ選択的に、多種多様なキラルカリックス[4]アレーンを構築することが可能になった。

著者らは、先行研究を踏まえ、CPA 1による不斉発現の機構を次のように推定している(図2B)[7]。CPA 1 は水素結合を介して、カリックス[4]アレーン1とアルデヒド2の縮合により生じるイミンおよびビニルアミン3を同時に活性化する。この際、中間体Int 1では、CPA 1上のナフチル基とカリックス[4]アレーン骨格との間に立体反発が働くため、優先的にInt 2を経由し、エナンチオ選択的にキラルカリックス[4]アレーン4を与える。また、4aから2工程で得られるCat 1 を、既存の不斉[4+2]付加環化反応に適用した(図2C)[8]。その結果、Cat 1は、竹本触媒Cat 2を、収率とエナンチオマー過剰率の両方で上回る、高い触媒活性を示した。他にも、著者らは、置換基を変更することで、キラルカリックス[4]アレーンの光学特性を調節できることを明らかにした。

図2. (A) 最適条件と基質適用範囲 (B) エナンチオ選択性発現時に想定される中間体 (C) 不斉触媒への応用

 

以上、不斉有機触媒を利用した分子間反応によるキラルカリックス[4]アレーン合成法が報告された。本手法により、多様なキラルカリックス[4]アレーンが合成され、キラル材料や不斉触媒として発展していくことが期待される。

 参考文献

  1. Böhmer, V.; Kraft, D.; Tabatabai, M. Inherently Chiral Calixarenes. J. Phenom. Macrocycl. Chem. 1994, 19, 17–39. DOI: 10.1007/BF00708972
  2. (a) Li, S.-Y.; Xu, Y.-W.; Liu, J.-M.; Su, C.-Y. Inherently Chiral Calixarenes: Synthesis, Optical Resolution, Chiral Recognition and Asymmetric Catalysis. J. Mol. Sci. 2011, 12, 429–455. DOI: 10.3390/ijms12010429 (b) Durmaz, M.; Halay, E.; Bozkurt, S. Recent Applications of Chiral Calixarenes in Asymmetric Catalysis. Beilstein J. Org. Chem. 2018, 14, 1389–1412. DOI: 10.3762/bjoc.14.117
  3. Kliachyna, M. A.; Yesypenko, O. A.; Pirozhenko, V. V.; Shishkina, S. V.; Shishkin, O. V.; Boyko, V. І.; Kalchenko, V. I. Synthesis, Optical Resolution and Absolute Configuration of Inherently Chiral Calixarene Carboxylic Acids. Tetrahedron 2009, 65, 7085–7091. DOI: 1016/j.tet.2009.06.039
  4. (a) Zhang, Y.-Z.; Xu, M.-M.; Si, X.-G.; Hou, J.-L.; Cai, Q. Enantioselective Synthesis of Inherently Chiral Calix[4]arenes via Palladium-Catalyzed Asymmetric Intramolecular C–H Arylations. J. Am. Chem. Soc. 2022, 144, 22858–22864. DOI: 10.1021/jacs.2c10606 (b) Zhang, X.; Tong, S.; Zhu, J.; Wang, M.-X. Inherently Chiral Calixarenes by a Catalytic Enantioselective Desymmetrizing Cross-Dehydrogenative Coupling. Chem. Sci. 2023, 14, 827–832. DOI: 10.1039/D2SC06234H
  5. Li, X.-C.; Cheng, Y.; Wang, X.-D.; Tong, S.; Wang, M.-X. De Novo Synthesis of Inherently Chiral Heteracalix[4]aromatics from Enantioselective Macrocyclization Enabled by Chiral Phosphoric Acid-Catalyzed Intramolecular SNAr Reaction. Chem. Sci. 2024, 15, 3610–3615. DOI: 10.1039/D3SC06436K
  6. Clerigué, J.; Ramos, M. T.; Menéndez, J. C. Enantioselective Catalytic Povarov Reactions. Org. Biomol. Chem. 2022, 20, 1550–1581. DOI: 10.1039/D1OB02270A
  7. Bisag, G. D.; Pecorari, D.; Mazzanti, A.; Bernardi, L.; Fochi, M.; Bencivenni, G.; Bertuzzi, G.; Corti, V. Central‐to‐Axial Chirality Conversion Approach Designed on Organocatalytic Enantioselective Povarov Cycloadditions: First Access to Configurationally Stable Indole–Quinoline Atropisomers. Chem. Eur. J. 2019, 25, 15694–15701. DOI: 10.1002/chem.201904213
  8. Liu, S.; Chen, Z.; Chen, J.; Ni, S.; Zhang, Y.; Shi, F. Rational Design of Axially Chiral Styrene‐Based Organocatalysts and Their Application in Catalytic Asymmetric (2+4) Cyclizations. Angew, Chem., Int. Ed. 2022, 61, e202112226. DOI: 10.1002/anie.202112226
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. フローケミストリーーChemical Times特集より
  2. 2次元分子の芳香族性を壊して、ホウ素やケイ素を含む3次元分子を作…
  3. 博士課程学生の奨学金情報
  4. 有機合成で発生する熱量はどのくらい?EasyMax HFCal
  5. KISTECおもちゃレスキュー こども救急隊・こども鑑識隊
  6. 温故知新ケミストリー:シクロプロペニルカチオンを活用した有機合成…
  7. NMRの測定がうまくいかないとき
  8. 科学を魅せるーサイエンスビジュアリゼーションー比留川治子さん

注目情報

ピックアップ記事

  1. 向山酸化 Mukaiyama Oxidation
  2. 1,3-ジエン類のcine置換型ヘテロアリールホウ素化反応
  3. 2,4,6-トリイソプロピルベンゼンスルホニルクロリド:2,4,6-Triisopropylbenzenesulfonyl Chloride
  4. 2-トリメチルシリル-1,3-ジチアン:1,3-Dithian-2-yltrimethylsilane
  5. ミツバチの活動を抑えるスプレー 高知大発の企業が開発
  6. 関大グループ、カプロラクタムの新製法開発
  7. 円偏光発光を切り替える色素ー暗号通信への応用に期待ー
  8. 糖鎖を直接連結し天然物をつくる
  9. 大村智 ー2億人を病魔から守った化学者
  10. モンサント酢酸合成プロセス Monsanto Process for Acetic Acid Synthesis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年11月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

第51回ケムステVシンポ「光化学最前線2025」を開催します!

こんにちは、Spectol21です! 年末ですが、来年2025年二発目のケムステVシンポ、その名…

ケムステV年末ライブ2024を開催します!

2024年も残り一週間を切りました! 年末といえば、そう、ケムステV年末ライブ2024!! …

世界初の金属反応剤の単離!高いE選択性を示すWeinrebアミド型Horner–Wadsworth–Emmons反応の開発

第636回のスポットライトリサーチは、東京理科大学 理学部第一部(椎名研究室)の村田貴嗣 助教と博士…

2024 CAS Future Leaders Program 参加者インタビュー ~世界中の同世代の化学者たちとかけがえのない繋がりを作りたいと思いませんか?~

CAS Future Leaders プログラムとは、アメリカ化学会 (the American C…

第50回Vシンポ「生物活性分子をデザインする潜在空間分子設計」を開催します!

第50回ケムステVシンポジウムの開催告知をさせて頂きます!2020年コロナウイルスパンデミッ…

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP